Hydraulic Formulas

$$
\begin{aligned}
& H P_{\text {in }}=\frac{Q \Delta P}{1714} \\
& H P_{\text {out }}=\frac{N T}{63025} \\
& T=\frac{D \Delta P e_{m}}{2 \pi} \\
& Q=\frac{D N}{231 e_{v}}
\end{aligned}
$$

Where

$$
\begin{aligned}
\mathrm{HP} & =\text { Horsepower } \\
\mathrm{Q} & =\text { Flow, GPM } \\
\mathrm{P} & =\text { Pressure, PSI } \\
\mathrm{P} & =\text { Pressure differential across the motor } \\
\Delta^{2} & =3.1416 \\
\mathrm{~T} & =\text { Torque, lb in } \\
\mathrm{D} & =\text { Motor displacement, cubic inches per } \\
& \text { revolution } \\
\mathrm{N} & =\text { Shaft Speed, RPM } \\
\mathrm{e}_{\mathrm{m}} & =\text { Mechanical efficiency } \\
\mathrm{e}_{\mathrm{v}} & =\text { Volumetric efficiency }
\end{aligned}
$$

To Convert	Into \longrightarrow Multiply By	
Into \longleftarrow	To Convert	pounds/sq.in.
bars	Divide By	
hTU/min	horsepower	.02356
BTU/min	kilowatts	.01757
centigrade	fahrenheit	$\left(\mathrm{C}^{\circ} \times 9 / 5\right)+32$
centimeters	inches	.3937
cu. cms.	cu. inches	.06102
cu. cms.	liters	.001
cu. inches	cu.cms.	16.39
cu. inches	liters	.01639
feet	meters	.3048
gallons	cu. inches	231
gallons	liters	3.785
horsepower	kilowatts	.7457
inches	millimeters	25.4
kilograms	pounds	2.205
pounds	newtons	4.448
pound-inches	newton-meters	.113
pound-inches	daNM	.0113
radians	degrees	57.3
square inches	sq. cms.	6.452

Side Load

Side loads are imposed upon the shaft of a motor by:

- Driving the load through a pulley or gear
- Supporting the weight of a vehicle or other load on the shaft
Or both

If the load above requires torque T pound-inches and is driven with a pulley on the motor shaft a with a radius of R inches, the side load imposed on the motor shaft is T / R pounds. If the motor shaft is connected to a sprocket for a chain drive, R is one half the pitch diameter of the sprocket. If an external load with a weight of W pounds is also being supported by the motor shaft above, the total side load on the shaft is:

$$
(S L)^{2}=W^{2}+(T / R)^{2}
$$

$$
\text { Side Load }(\mathrm{lb})=\sqrt{\mathrm{W}^{2}+(\mathrm{T} / \mathrm{R})^{2}}
$$

Vehicle Propulsion Systems

Hydraulic motors are often used to drive off-highway vehicles, either directly or through gear reducers. The power required to propel the vehicle, called "Tractive Effort," is supplied by the hydraulic motor(s). It is normally expressed in pounds and is the sum of the forces below:

$$
T E=(R R+G R+F+D P) \times 1.1
$$

Where:
RR $=$ Rolling Resistance
GR $=$ Grade Resistance
F $=$ Acceleration Force
DP $=$ Drawbar Pull

Definitions

- Tractive Effort (TE)

Tractive effort is the total linear force that a vehicle can exert on the ground. Sometimes called "rim pull," it is the axle torque divided by the distance from the axle to the surface it is traversing.

- Rolling Resistance (RR)

Rolling resistance is the force in pounds required to propel a vehicle at constant speed over level terrain. It varies with the weight of the vehicle and the type of surface it is traversing. Soft sand, for example, offers more resistance to movement than concrete.
$R R=G V W \times R \quad$ where:
RR = Rolling Resistance (lbs.)
GVW = Gross Vehicle Weight (Ibs.)
R = Rolling Resistance Factor dependent upon type and condition of surface. Typical " R " values are shown in the accompanying table.

Surface Type	Surface Condition	$\begin{aligned} & R \\ & \text { Value } \end{aligned}$
Concrete	Excellent	0.010 lb .
Concrete	Good	0.015 lb .
Concrete	Poor	0.020 lb .
Asphalt	Good	0.012 lb .
Asphalt	Fair	0.017 lb .
Asphalt	Poor	0.022 lb .
Macadam	Good	0.015 lb .
Macadam	Fair	0.022 lb .
Macadam	Poor	0.037 lb .
Cobbles	Ordinary	0.055 lb .
Cobbles	Poor	0.085 lb .
Grass		0.025 lb .
Snow	2 In .	0.025 lb .
Snow	4 In .	0.037 lb .
Dirt	Smooth	0.025 lb .
Dirt	Sandy	0.037 lb .
Mud		0.037 to $\overline{0.150} \mathrm{lb}$.
Sand	Level/Soft	0.060 to 0.150 lb .
Sand	Dune	$0 . \overline{150 ~ t o ~} \overline{0.3} \overline{00} \mathrm{lb}$.

- Grade Resistance (GR)

Grade resistance is the additional force required to move a vehicle up an incline. The grade of a slope is normally expressed as a percentage, and represents the number of feet of rise in 100 feet of length. A slope that rises 10 feet in 100 feet has a grade of 10%. The gradeability of a vehicle is defined as the maximum grade the vehicle can climb.

$$
\begin{aligned}
\mathrm{GR}=0.01 & \times \text { GVW } \times \text { G where: } \\
\mathrm{GR} & =\text { Grade Resistance (lbs.) } \\
\text { GVW } & =\text { Gross Vehicle Weight (lbs.) } \\
\mathrm{G} & =\text { Grade (\%) }
\end{aligned}
$$

The following table gives the approximate relationship between grade in percent and slope in degrees.

Grade (Percent) Slope (Degrees)	
1%	$0^{\circ} 35^{\prime}$
2%	$1^{\circ} \quad 9^{\prime}$
5%	$2^{\circ} 51^{\prime}$
6%	$3^{\circ} 26^{\prime}$
8%	$4^{\circ} 35^{\prime}$
10%	$5^{\circ} 43^{\prime}$
12%	$6^{\circ} 54^{\prime}$
15%	$8^{\circ} 31^{\prime}$
20%	$11^{\circ} 19^{\prime}$
25%	$14^{\circ} \quad 3^{\prime}$
32%	18°
60%	31°

- Acceleration Force (F)

The force required to accelerate a vehicle from an initial speed V_{1} (in feet/second) to speed V_{2} in T seconds is the accelerating force in pounds. If the acceleration is from rest, V_{1} is zero.

$$
F=\frac{V \times G V W}{T \times 32.16} \text { where }
$$

$\mathrm{V}=$ Change in Velocity (ft. per Second) (Final Velocity - Initial Velocity)
GVW = Gross Vehicle Weight (lbs.)
$\mathrm{T}=$ Time for Velocity Change (Seconds)
Note - To obtain velocity in feet per second when MPH is known, Multiply MPH by 1.467 .

- Drawbar Pull (DP)

Drawbar Pull is the force a vehicle can exert on a load in addition to the force required to propel itself.
Actual force to tow or push a load can be calculated based upon Rolling Resistance, Accelerating Force and Grade Resistance of towed or pushed load.

- Motor Torque

The total Tractive effort required to propel a vehicle is the sum of the forces due to Rolling Resistance, Grade Resistance, Acceleration and Drawbar Pull plus 10\% for friction and other variables:

$$
T E=(R R+G R+F+D P) \times 1.1
$$

When Tractive Effort has been calculated, hydraulic motor torque can be estimated by:

$$
T=\frac{\mathrm{TE} \times r}{\mathrm{G} \times \mathrm{N}} \text { where: }
$$

$\mathrm{T}=$ Hydraulic Motor Torque (lbs. in.)
TE = Tractive Effort
$r=$ Rolling Radius of Driven Tires (inches)
$\mathrm{G}=$ Gear Reduction Ratio Between Hydraulic Motors and Driven Wheels (if none, use a value of 1)
$\mathrm{N}=$ Number of Driving Motors

- Slip Torque

Slip torque is the torque at the motor shaft that will cause the wheels or tracks to break traction and skid. It is affected by the weight of the vehicle and the coefficient of friction between the wheels or tracks and the surface.

ST $=\frac{V W \times u \times r}{G \times N}$ where:

ST = Hydraulic Motor Slip Torque (lb in)
$V W=$ Maximum Weight on Driven Wheel (lb) Including: Allowable Vehicle Overload Dynamic Weight Shift.
$u=$ Coefficient of Friction Between Tire and Ground. (A value of 0.6 is used for "normal" tires and an average road surface)
$r=$ Rolling Radius of Driven Tires (inches)
$\mathrm{G}=$ Gear Reduction Ratio Between Hydraulic Motors and Driven Wheel.
$\mathrm{N}=$ Number of Driving Motors

- Rolling Radius

The rolling radius should be based on actual application factors such as Plyrating, Rated Load and inflation pressure can result in different values.

- Hydraulic Motor Speed

$$
S=\frac{168 \times \vee \times G}{r} \text { where: }
$$

S = Required Hydraulic Motor Speed (RPM)
$\mathrm{V}=$ Desired Vehicle Velocity (MPH)
$\mathrm{G}=$ Gear Reduction Ratio Between Hydraulic Motors and Driven Wheels (if none, use a value of 1)
$r=$ Rolling Radius of driven Tires (inches)

The chart below will estimate the wheel RPM -vs- vehicle velocity for various rolling radii.

